skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smedira, Devin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper considers the interplay between semidefinite programming, matrix rank, and graph coloring. Karger, Motwani, and Sudan give a vector program in which a coloring of a graph can be encoded as a semidefinite matrix of low rank. By complementary slackness conditions of semidefinite programming, if an optimal dual solution has high rank, any optimal primal solution must have low rank. We attempt to characterize graphs for which we can show that the corresponding dual optimal solution must have rank high enough that the primal solution encodes a coloring. In the case of the original Karger, Motwani, and Sudan vector program, we show that any graph which is a $$k$$-tree has sufficiently high dual rank, and we can extract the coloring from the corresponding low-rank primal solution. We can also show that if a graph is not uniquely colorable, then no sufficiently high rank dual optimal solution can exist. This allows us to completely characterize the planar graphs for which dual optimal solutions have sufficiently high dual rank, since it is known that the uniquely colorable planar graphs are precisely the planar 3-trees. We then modify the semidefinite program to have an objective function with costs, and explore when we can create an objective function such that the optimal dual solution has sufficiently high rank. We show that it is always possible to construct such an objective function given the graph coloring. The construction of the objective function gives rise to heuristics for 4-coloring planar graphs. We enumerated all maximal planar graphs with an induced $$K_4$$ of up to 14 vertices; the heuristics successfully found a 4-coloring for 99.75\% of them. Our research was motivated by trying to use semidefinite programming to prove the four-color theorem, which states that every planar graph can be colored with four colors. There is an intriguing connection of the Karger-Motwani-Sudan semidefinite program with the Colin de Verdi\`ere graph invariant (and a corresponding conjecture of Colin de Verdi\`ere), in which matrices that have some similarities to the dual feasible matrices of the semidefinite program must have high rank in the case that graphs are of a certain type; for instance, planar graphs have rank that would imply that the primal solution of the semidefinite program encodes a 4-coloring. 
    more » « less
  2. Aardal, Karen; Sanità, Laura (Ed.)
    This paper considers the interplay between semidefinite programming, matrix rank, and graph coloring. Karger, Motwani, and Sudan [10] give a vector program for which a coloring of the graph can be encoded as a semidefinite matrix of low rank. By complementary slackness conditions of semidefinite programming, if an optimal dual solution has sufficiently high rank, any optimal primal solution must have low rank. We attempt to characterize graphs for which we can show that the corresponding dual optimal solution must have sufficiently high rank. In the case of the original Karger, Motwani, and Sudan vector program, we show that any graph which is a k-tree has sufficiently high dual rank, and we can extract the coloring from the corresponding low-rank primal solution. We can also show that if the graph is not uniquely colorable, then no sufficiently high rank dual optimal solution can exist. This allows us to completely characterize the planar graphs for which dual optimal solutions have sufficiently high dual rank, since it is known that the uniquely colorable planar graphs are precisely the planar 3-trees. We then modify the semidefinite program to have an objective function with costs, and explore when we can create a cost function whose optimal dual solution has sufficiently high rank. We show that it is always possible to construct such a cost function given the graph coloring. The construction of the cost function gives rise to a heuristic for graph coloring which we show works well in the case of planar graphs; we enumerated all maximal planar graphs with a K4 of up to 14 vertices, and the heuristics successfully colored 99.75% of them. Our research was motivated by the Colin de Verdière graph invariant [5] (and a corresponding conjecture of Colin de Verdière), in which matrices that have some similarities to the dual feasible matrices must have high rank in the case that graphs are of a certain type; for instance, planar graphs have rank that would imply the 4-colorability of the primal solution. We explore the connection between the conjecture and the rank of the dual solutions. 
    more » « less